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By making simple assumptions, an analytical theory is deduced for the mean 
velocity behind a two-dimensional obstacle (of height h) placed on a rigid plane 
over which flows a turbulent boundary layer (of thickness 6). It is assumed that 
h 4 6, and that the wake can be divided into three regions. The velocity deficit 
- u is greatest in the two regions in which the change in shear stress is important, 
a wall region (W) close to the wall and a mixing region (M) spreading from the top 
of the obstacle. Above these is the external region (E) in which the velocity field 
is an inviscid perturbation on the incident boundary-layer velocity, which is 
taken to have a power-law profile U ( y )  = U,(y-yl)w/P,  where n 4 I. I n  (M), 
assuming that an eddy viscosity ( = K h U ( h ) )  can be defined for the perturbed flow 
in terms of the incident boundary-layer flow and that the velocity is self- 
preserving, it is found that u(x, y )  has the form 

and the constant which defines the strength of the wake is 

where u = uE(x, y )  as y -+ 0 in region (E). 
I n  region (W), u( y )  is proportional to In y .  By considering a large control surface 

enclosing the obstacle it is shown that the constant of the wake flow is not simply 
related to the drag of the obstacle, but is equal to the sum of the couple on 
the obstacle and an integral of the pressure field on the surface near the body. 

New wind-tunnel measurements of mean and turbulent velocities and Reynolds 
stresses in the wake behind a two-dimensional rectangular block on a roughened 
surface are presented. The turbulent boundary layer is artificially developed by 
well-established methods (Counihan 1969) in such a way that 6 = 8h. These 
measurements are compared with the theory, with other wind-tunnel measure- 
ments and also with full-scale measurements of the wind behind windbreaks. 

t Also: Department of Engineering. 
1 Present address : Central Laboratories, Ministry of Works, Lower Hutt, New Zaaland. 
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It is found that the theory describes the distribution of mea,n velocity reasonably 
well, in particular the (z/h)-’ decay law is well confirmed. The theory gives the 
correct self-preserving form for the distribution of Reynolds stress and the 
maximum increase of the mean-square turbulent velocity is found to decay 
downstream approximately as (x/h)-$ in accordance with the theory. The theory 
also suggests that the velocity deficit is affected by the roughness of the terrain 
(as measured by the ‘roughness length’ yo) in proportion to  In (hly,,), and there 
seems to be some experimental support for this hypothesis. 

1. Introduction 
At present little is hiown about the wake behind surface obstacles in turbulent 

boundary layers. This is surprising as there are so many situations in which such 
flows occur. For example, despite an enormous number of measurements of the 
wind behind full-scale and model fences and shelter belts there are not even any 
useful empirical formulae describing the sheltering effects of these obstructions. 
The most comprehensive review of this subject is the World Meteorological 
Office (W.M.O.) technical note edited by Eimern et al. (1964). A more recent 
review has been written by Plate (1971b). 

Flows behind full-scale or model buildings have been investigated much less 
thoroughly, even though such flows have an important effect on turbulent 
diffusion from sources in their vicinity (Plate 1967), on the flight of V.T.O.L. 
aircraft near buildings (Burnham 1967) and on the wind loads on other buildings 
downwind (Mair & Maul1 1971). 

I n  t.his paper we begin by constructing a simple theory to describe the wakes 
behind two-dimensional surface obstacles whose height is small compared with 
the thickness 6 of a turbulent boundary layer flowing over the surface. For 
example, this implies that  in the atmosphere the obstacle should be less than 
about 40 m high. Our method is an adaptation of the theory for the laminar wake 
behind a two-dimensional obstacle in a laminar boundary layer developed by 
Hunt (1971b). This theory has recently been criticized by Smith (1973), who 
obtained different expressions for the velocity in the wake well downstream. 
However, i t  has been shown by Jackson (1973) that  Smith’s criticism is only 
significant far downstream of a body and Hunt’s results remain valid for down- 
stream distances not exceeding 6. Jackson has constructed a solution which is 
uniformly valid and successfully matches the solutions of Smith and Hunt. 

Various other approaches have been used in developing theories of two- 
dimensional wall wakes. The earliest appear to  have been those of Tani (1958) 
and Kaiser (1959), who both modelled a windbreak by a sheet source of (negative) 
momentum and calculated the wake flow on the assumption that this momentum 
spread according to  the diffusion equation, Tani using a variable and Kaiser 
a constant cliffusion coefficieikt No attempt was made to apply boundary 
conditions to the velocity deficit a t  the wall. Sforza & Mons (1 970) used similar 
ideas but made no significant improvements. The most important theory to date 
is that  advanced by Towvnsend (19G5), who was concerned with the effects of 

t Another analysis along similar lines is tlmt of Gartshore (1972). 
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a change in wall boundary conditions on an equilibrium boundary layer. I n  
practice this means that his analysis is only applicable for an obstacle whose 
height is much less than that of the constant-stress layer. Also the solution is 
only valid sufficiently far downstream that the obstacle appears as a line 
singularity on the surface which does not introduce any new length scale of its 
own. This is a rather serious restriction considering the known effects of separa- 
tion and reattachment on the length scales of wall turbulence (Bradshaw & 
Wong 1972). 

The region of strong shear near the mean separation streamline is known (see 
Plate 1971 a )  to be well described by the theory of turbulent mixing layers, but 
otherwise little is known about the recirculating bubble behind the obstacle. 

I n  a uniform flow the total momentum deficit in the wake of an obstacle is 
equal to its drag, and consequently several investigations have attempted to 
find a simple relation for the wake behind an obstacle on a surface. For example, 
Townsend (1965) postulated some relation of this form to  specify the strength 
of the wake in his theory. A critical review of the various attempts to relate the 
integral of the momentum deficit in the wake to the drag has recently been given 
by Seginer (1972). Using Nageli’s (1953) detailed experimental data for the 
horizontal component of velocity in the wake of a fence, Seginer calculated each 
term of the momentum integral. He was able to show which terms were the most 
important but did not find any connexion between the drag on the obstacle and 
the momentum deficit in its wake. 

Existing computational methods for calculating turbulent boundary layers 
are not applicable to this problem, because the obstacle introduces length and 
velocity scales which are not characteristic of boundary layers and so cannot be 
specifiedin advance. But it would be interesting to see the computational methods 
for solving elliptic problems, outlined by Laundei & Spalding (1972), being 
applied to this problem. 

The primary object of the present theory is to predict as simply as possible, 
and without extensive computation, the properties of the velocity deficit and, 
if possible, the shear stress and turbulence in the wake. This has required an 
over-simple assumption about the relation between shear stress and mean 
velocity gradients, but the satisfactory agreement of the analysis with experi- 
ments appears to  justify its use. A more elaborate theory, perhaps involving 
the solution of the turbulent energy equation (Bradshaw, Perriss & Atwell 
1967; Townsend 1961)) may be worth developing in the future. 

A second aim of the theory is to relate the velocity deficit in the wake to the 
forces on the obstacle, by analogy with the relation between the total momentum 
deficit and the drag in the wake behind a body in a uniform flow. Such a relation, 
for certalin types of obstacle, was obtained by Hunt (1971 b) ,  linking an integral 
of the velocity deficit indirectly to  the couple on the obstacle. In  the theory 
presented here it is found that a certain integral of the velocity which is constant 
along the wake is related to the pressure field on the body and on the surface 
near the body, but there is no direct relation with the couple. 

There have been many measurements of wakes behind two-dimensional surface 
obstacles in turbulent boundary layers both in wind tunnels and in the natural 

3 1-2 
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wind. A review has been made recently by Plate (19714.  However, the purpose 
of these measurements has usually been practical rather than scientific and 
in particular no detailed turbulence measurements behind a two-dimensional 
obstacle on an aerodynamically rough surface have been published. Plate & 
Lin (1965) made detailed measurements on a smooth wall of the mean and 
r.m.s. turbulent velocities behind two-dimensional wedges which were smaller 
than the boundary-layer thickness. Good & Joubert (1968) have made the most 
detailed measurements of pressure and drag on two-dimensional fences with 
various heights, but they only measured the flow field for a particular fence, which 
was higher than the boundary-layer thickness. Other wind-tunnel studies are 
mentioned later. The only comprehensive full-scale measurements are those made 
by Nageli (1953) of wind behind 2.2 m high fences in Switzerland. Even then 
only mean velocities were measured, though comments were made about the 
turbulence. 

The experiments described in $ 3 of this paper were performed in a wind tunnel 
a t  the Central Electricity Research Laboratories. A two-dimensional obstacle 
was placed in a turbulent boundary layer over a rough wall. The boundary layer, 
which was artificially thickened, was an accurate simulation of the atmospheric 
boundary layer (Counihan 1969). Mean and fluctuating velocities and Reynolds 
stresses were measured, and thus a comprehensive description of the wake is 
possible. The results generally agree with our simple theory. I n  $4,  we also com- 
pare the results of our theory with the wind-tunnel experiments of Plate & Lin 
(1965) and with the full-scale measurements of Nageli (1953). We also compare 
our experimental results with these previous experiments. Some general con- 
clusions are drawn in § 5. 

Some of the results of this paper were briefly mentioned in a review paper by 
Hunt (1971 a). The theory presented here is the work of Hunt and Jackson and 
the experiments were performed by Counihan. 

2. Theory of two-dimensional wakes 
2.1. Assumptions 

Our analysis for the flow over a rough surface behind a two-dimensional body in 
a, turbulent boundary layer is based on a number of assumptions, which will 
be described with reference to figure 1. 

(I) If k ,  h and d are respectively the heights of the roughness elements in the 
incident boundary layer, the body whose wake is to be studied and the boundary 
layer, then we assume 

k g h e d .  (2.1) 

In addition the shape of the obstacle must be such as to  cause a well-defined 
turbulent separation bubble in its lee. 

(11) Sufficiently far downstream (x > X ) ,  but in a distance less than that (L)  
which it takes for the velocity in the undisturbed boundary layer to change 
appreciably, we assume that the mean velocity in the wake (U,(z, y), U,(x, y), 0) 
returns to its value in the undisturbed boundary layer, defined as (U(y), V(y), 0). 
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FIGURE 1. A two-dimensional surface obstacle in a turbulent boundary layer showing the 
regions of flow and two typical streamlines. 

This assumption has been used to described laminar wakes by Hunt (1971 b) and 
for laminar wakes has been given a formal justification by Jackson (1973). In  
the case of a turbulent boundary layer this assumption is more generally valid 
because the large eddies in the outer part of the boundary layer can diffuse the 
momentum deficit in the wake more efficiently than purely viscous shear stresses. 
The implication of this assumption is that there is a range of values of x < X 
within which lGX(x, y )  - U ( y ) (  is small compared with U ( y ) .  

(111) The main assumption about the upstream boundary layer is that the 
mean velocity profile can be described by a power law (Platme 1971b), 

where U, is the wind speed outside the boundary layer. The exponent n is 
chosen to obtain the best fit over the lower part of the boundary layer where the 
wake develops. This profile cannot hold very close to the roughness elements 
(where y -N k ) ,  when a logarithmic profile becomes a better description: 

~ ( y )  = ?In (-), Y -Y1 
Yo 

where K ( = 0.4) is von K&rm&n’s constant. For y < k, a new description for the 
profile is needed which is of no consequence for our analysis. The parameter y l ,  
a ‘zero-plane displacement’ for the incident boundary layer, has to be incor- 
porated in (2.2) to describe the velocity profile satisfactorily; the relation between 
yo and k depends on the density of roughness elements, but it is usually found 
that yo is of order 0-15k. For the logarithmic profile yo is the ‘roughness length ’. 

It is useful to note that for most zero-pressure-gradient turbulent boundary 
layers the mean turbulent shear stress Sz, is approximately constant for y/S < Y,, 
where Y, N 0.15. U, is defined in terms of S,, as U, = (TzU/p)k 

(IV) Far downstream of the body the small perturbations to the incident flow 
caused by the body can be divided into three regions. The region downstream of 
the body adjacent to the rough wall is denoted as the wall region (W) and is 
assumed to be an ‘equilibrium’ layer in the sense of Townsend (1961). Turbulent 
energy production locally balances dissipation, and with additional physically 
plausible (and by now well-established) assumptions the perturbation shear 
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stress and velocity profile can be calculated. It is assumed that this region has 
a thickness y,(x) which necessarily is less than Y,. Since y,(x) increases downstream 
this assumption imposes an upper limit on the values of x for which the theory 
is valid. 

Also, downstream of the body, above (W), we postulate the existence of a 
mixing region (M) with a depth of order 1(x), where 1(x) < X ,  X being a dista.nce 
characteristic of the length of the wake. In  this zone, where inertial and shear 
stresses balance, we assume that the shear layer shed from the body, the tur- 
bulence transported from the wall and the turbulence convected from the 
upstream flow produce a perturbation flow which is self-preserving, i.e. one in 
which “motions at  different sections differ only in velocity and length scales, 
and are dynamically similar in those aspects of motion controlling mean velocity 
and Reynolds stress” (Townsend 1956). The reason for this assumption is that 
there are no length scales imposed on the flow other than the height of the 
obstacle. This is because the flow is independent of fluid viscosity if l/v % 1 
and because, even though U (  y )  = ( U,/Sn) yn, 6 is not a relevant length scale when 
h < 6. Thus the length scales are the height of the body h and the intrinsic 
dimensions l ( x )  and X. Since 1 < X ,  in regions (M) and (W) a/ay % a/ax. The 
obstacle and the mixing zone (M) create a third disturbed region (E), which is 
an inviscid perturbation on the boundary-layer flow. In  this region, which may 
or may not penetrate beyond the boundary layer, a/ax - a/ay. 

Thus in regions (M) and (E) 

where (ul, 1.1 < U(y) ,  and in (M) u(x , y )  and v(x ,y )  have self-preserving forms. 
The orders of magnitude of v and V follow from continuity, namely, 

v -  u, V N US/L in (E). 
v - UllX, v - Ul/L 

Note that this particular division of the flow into zones is entirely dependent 
on our first assumption that h < 6. It somewhat differs from the analytically 
imprecise divisions of Plate (1971a), which appear to describe wakes for all 
ratios h/6 of the height of the body to that of the boundary layer. A further 
detailed assumption (V) about matching the two regions (M) and (W) is described 
in 52.2.  

2.2. Calculations of mean velocities 
The time-averaged equations for the rate of change of momentum and for 
continuity in a steady turbulent flow are 

(2.7) 
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where T,,, TXy and TyZ/ are the combined Reynolds and viscous stresses and 
is the mean pressure. On substituting the expressions for U, and Uy from (2.4) 
into (2.6) and (2.7), and using the order-of-magnitude estimates for u and V 
in (2.5), it follows that the terms in V can be ignored. Therefore the velocity 
components in the wake regions can be expressed as 

(2.9) 

(2.10) 

(2.11) 

- 
u, = u ( x ,  y) + V(Y), Z$/ = v(x, Y), 

where Iu], lo] < V(y). It follows from this assumption that 

F = 24x7 Y) +m, Y) 
- 

and r,, = rzx+ T,,, etc., 

where P(x, y), T,,, etc., are the mean stresses in the undisturbed boundary layer. 
Substituting (2.9)-(2.11) into (2.6)-(2.8) and eliminating the terms for the 
undisturbed boundary layer, we obtain the following equations for the perturba- 
tion quantities: 

(2.12) 

(2.13) 

(2.14) 

Mixing region (M). To specify the problem completely the pertul ,ation stresses 
rZy, etc., have t o  be related to the perturbation mean velocities. These relations 
are different in (M) and (W). The assumption that the flow in region (M) is self- 
preserving does not determine the relation between rXy and u(x,  y). As we have 
set out to achieve a simple model of the wake we consider the simplest relation, 
namely 

where viM is the eddy viscosity. 
The change in stress arising from an additional rate of strain cannot be found 

unless the effect of the strain on the eddy viscosity is known. Bradshaw (1971) 
expressed this effect by 

- 
7,y = pv, a;ii,lay, 

where wo is the eddy viscosity of the undisturbed boundary layer and a and b 
are constants. We shall assume that vJf depends linearly on aii,/ay, so that 
a = 1. Bradshaw (1971) and Townsend (1972) have both noted that the strain 
avlax has a strong effect on the eddy viscosity and estimated that b z 10, but 
it is nevertheless negligible in the expression above if Z/X is sufficiently small 
that  31 < X. Thus, in the mixing region, the perturbation stress rzv is given by 
rXy = 2v0(y) &lay. Since the upstream flow, including the large eddies of the 
outer boundary layer, has been mixed by the flow over the body, it seems appro- 
priate to take an average value of vo to estimate the shear stress in the wake, say 
vo a t  the height of the body y = h. I n  some respects the mixing region (nil) might 
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be expected to resemble a turbulent wake in a uniform flow, where many observa- 
tions confirm that ;i3cy oc 2iix/ay. For these reasons we assume that in (M) 

7,y = @O(Y = h)  a./ay, ( 2 . 1 5 )  

where, by definition, vo(y = h) = T,,/(dU/dy).  If  the obstacle lies within the 
constant-stress layer of the incident flow, vo(h) may be found using the usual 
mixing-length expression 

U: = T,,/p = K2y2(d Uldy)' = v0 d U/dy ,  (2.16) 

that is, vo(h) = Khu*. (2.17) 

If  the components of the perturbation stress me all of the same order of magnitude 
the equation of motion (2.12) now becomes, for y yl, 

(2.18) 

While the displacement height y1 is a useful device for fitting (2.2) to  a turbulent 
boundary layer, it is not obvious that the wake will experience the same dig- 
placement. As a first approximation, therefore, it has been omitted from (2.18),  
which means that the solution of this equation will not be valid when y - yl; 
this is of no consequence because we have already postulat'ed that i t  only holds 
in the region (M), well away from the wall. 

The proposed solution is 

(2.19 a )  

where 3 = z/(h - yl) and r] = y/Z(i) . f (r])  is assumed to  be O( l) ,  so that specifies 
the magnitude of the velocity deficit in the wake. The form for u is suggested 
by the type of function known to  describe other self-preserving flows, such aa 
jets and wakes. The expression for v is then chosen to satisfy continuity. The 
length h -  y1 is the only reference length available well away from the wall, 
hence the definition of 5. 

Substituting ( 2 . 1 9 ~ ~ )  into (2.18),  i t  is found that this self-preserving solution 
may exist only if 

l / ( h  - yl) = (KZ)l'(n+z), 

(2.19b) 

Hence the rate of spread of the wake is found to depend only on the parameter K ,  
which can be regarded as a measure of the ratio of shear stresses to  inertial 
stresses (i.e. a turbulent 'Reynolds number' of t,he obstacle). K is also a measure 
of the roughness height of the surface relative to the height of the obstacle. I n  
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Townsend’s (1965) analysis only the roughness height yo occurs in the analysis. 
The height of the obstacle does not, which is why Townsend’s analysis can only 
be valid very far downstream of the obstacle, even if the other condition that 
h < Y, is satisfied. 

The differential equation fort(?) is then 

(n+2)f”+yn+lf”+ [m(n+2)-n]ylLf’+n[i-m(n+2)]y-lf= m ( n + 2 ) p o .  
(2.20) 

Only two boundary conditions are available at  the wall, so at least one solution 
must be eliminated by considering the limit 7 -+ a. The asymptotic behaviour of 
the solutions is 

f ,., rn, 71-m(n+2) 2 porl-”. 

The first corresponds to a simple displacement of the velocity profile (i.e. 
u cc d U / d y ) ,  which is quite permissible. The second implies that at  the edge of 
the wake u does not tend to zero, in fact it becomes independent of z. As this is 
a boundary-layer profile rather than a wake profile this solution is omitted. The 
remaining term is the particular integral representing a coupling via the per- 
turbation pressure between the wake and the flow in the outer region (E). From 
the subsequent analysis of the external region (E) i t  follows that if 

n(i  -n)/12(x) 9 r2, 

which should be satisfied in most turbulent wakes, the pressure term is zero and 
the appropriate behaviour as 7 -+ 00 is evidently f - yn. 

Two solutions have this behaviour, and there are two wall conditions remaining. 
The appropriate solution cannot be determined until m is found, which is usually 
achieved using a conservation condition for some physical quantity in the wake. 
We write 

u = U E ( X ,  y )  + q x ,  y ) ,  27 = V E ( X ,  y )  + v”(., y), 

where uE = A(%) d U / d y ,  VE = - U ( y )  d A / d x .  

uE and vE are the solutions for region (E) as y -+ 0 and are the leading terms in 
the expansions of u and v in terms of 7 as 7 3 co. On substituting into (2.18) 
(but now omitting the pressure gradient), multiplying by y ,  integrating from 
y7 to CQ and using the continuity equation, we find 

If the analysis for (M) were valid down t o  the surface, i.e. y, 3 0, where u, v“ = 0, 
then the right-hand side would be zero and 

(2.22) 

where 6 is a constant. In  fact y ,  =+ 0,  and in the wall region ( y  < y,) the expression 
for the shear stress is different, so that the result (2.22) is not exact. However, i t  
can be shown from the solution for (u, v) in (W) that the error in (2.22) caused by 
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ignoring the wall region (W) is small. The self-preserving solution can only satisfy 
the conservation condition (2 .22)  i f m  = 1 ,  when 

71+7* [ f '  - lim f '3 dy = I ,  
7-m 

(2 .23)  I = - C/I<(h - Z J ~ ) ~  U2(h)  a. 
The appropriate solution to (2 .20)  is found by multiplying through by 7 and 
integrating from 7 to co. Then 

f(7) =fib) +Bf2(7), (2 .24)  

!om 

where 

is the confluent hypergeometric function defined by Abramowitz & Stegun 
(1964, p. 504) and B is a constant. Note that, as 7 3 0, fl N 72, f2 - 1 + O(72+n) 
and both fl and f2 increase like 11" as 7 3 00. The choice of the appropriate con- 
stants for fi and fi is fixed by the conservation condition (2.23) and by matching 
the solutions for u, v and 7w a t  the boundary between regions (M) and (W). From 
the solution in region (W) it  follows that this matching condition fixes B, which 
is found to be O( 1 ) .  Since the functions in (2 .24)  are such that f B f;l when 7 2 1, 
u(x ,  y) may be expressed solely in terms off ;. 

When n = 0, f; = 27e-4VP, which gives the general shape of the velocity 
profile for small n. The exact profile is insensitive to  the particular value of n, 
for n < 1 .  

In  order to express the wake strength G in terms of the constant 6, the integral 
I is needed. It is found to be (when B = O ( 1 ) )  

4 + n  I - n  
(4+*~)1(2+n) (G) (G) 

(2 .25 )  ( 1 + n ) ( 2 + ? t )  
1 + 2 n  I(n)  = 

r(Z) 
Typical values are I = 7-08 for n = 0, 7.95 for n = 0.2 .  The final expression for 
the velocity deficit is 

h - y  d 2 - n  n + 4  -77b+2 wen, . (2 .26)  
U -- 

U ( h )  - - K ( h -  y1)2  U 2 ( h )  (Ti) & ["lF1 (G' %' m)] 
An implication of this expressionis that, if C / [ ( h  - y1)2 U2(h)] depends mainly on 
the obstacle geometry, the velocity deficit is approximately inversely proportional 
to K.  Since A' increases with increasing surface roughness, the make strength 
then decreases as yo increases. 

One particular velocity profile is shown in figure 2 (a) with a value of C? appro- 
priate to the experiments described later. 

IVaEl region (W). The earlier approximation that vo is constant must be very 
poor near the wall, where one expects the velocity profile to be logarithmic, or 
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( b )  

FIGURE 2. The wake of a two-dimensional obstacle. (a) Self-preserving velocity profile in 
regions (M) and (W). -I-, experimental curve with scatter bar (n. = 0.125, h/6 = +) ; 
---, theoretical curve (magnitude chosen to give best fit with experimental profile a t  
maximum) ; - - - - , extrapolation of region-(M) solution into region (W). ( b )  Perturba- 
tion streamlines of the wake flow in regions (E), (M) and (W). 

v,, cc y. Since we have shown that the perturbation pressure gradient - aplax 
is negligible, and since u, v -+ 0 as y -+ 0 in the wall region, the momentum equa- 
tion requires that close to the wall arzv/ay = 0. From the arguments of Townsend 
(1961) and our assumption that the wall region is in equilibrium it follows that 
near y = 0 the total velocity is 

u, = , 
K Yo 

( 2 . 2 7 )  
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(2.28) 

where u* and F(Z)  are unknown functions. The result (2.28) cannot be valid 
throughout the wall region (W), because the shear stress rzar must vary with y 
t o  balance the inertial stresses, which grow from zero at the wall to  their value 
in the mixing region a t  y = y,(z). Since we have not obtained a complete solution 
for this region, we adopt (2.28) as an approximation to u for the whole wall 
region 0 < y < y,(x). Then u* and F(5)  are determined by matching u and rzV 
with solutions in (M) at y,(z). The vertical velocity v may be matched by cal- 
culating v from (2.28) and matching with v in (M), which has to be calculated using 
both expressionsf, and fi in (2.24). 

The eddy viscosity (and hence velocity gradient) is discontinuous between 
(W) and (M) if (2.27) is assumed to hold throughout (W); this must be accepted 
in the interests of simplicity, but it is encouraging that Bradshaw & Wong 
(1972) have reported finding just suoh a discontinuity in a numerical study of 
this problem. The matching conditions at y = yT give 

and 2U*u*F(Z) = %@f,(yr/I?) U(h) .  
XI? 

(2.29) 

(2.30) 

These lead to  complicated expressions for u*, F(Z) and yT unless 7, = y,/Z is 
close to the value of 7 a t  whichf”(7) vanishes. This assumption is confirmed by 
the solution below. Then writing 

qr = T,+E,  where Is1 d 70, (2.31) 

substituting into (2.29) and (2.30) and omitting terms in e2, we find 

(2.32) 

Using v0(h) e KhU*, it is clear that 8 is small when I N h B yo. The velocity 
deficit is now 

which is similar to the solution obtained by Townsend (1965). To 
approximation the change in stress is 

(2.33 a)  

the same 

(2.33 b )  

The solutions (2.33a, b)  are strictly only valid as y -+ 0, because inertial effects 
have been ignored in their derivation. However, as we shall see in 9 3, these results 
describe the velocity profiles well and give a stress with the correct order of 
magnitude near y = 0. 
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ExternalJEow region (E). The governing equation for region (E) is obtained by 
taking the curl of the momentum equations (2.12) and (2.13), omitting the shear 
stress terms, and using the continuity equation (2.14) to  express u in terms of v. 
Then, expressing U ( y )  in its power-law form from (2.2) and using the fact that 
y > y1 in region (E), we find that 

a2v a2v n(l -n) -+-+- v = 0. 
ax2 a92 y2 

Consider the order of magnitude of the various terms in this equation when 
y N l (x ) ,  i.e. near the boundary between regions (E) and (M). It follows from the 
self-preserving form of v in region (M) that, whatever the precise asymptotic 
form of f(r), as 7 -+ 00, a2v/ax2 = O ( V / X ~ ) .  Thence, if x is sufficiently large that 
n( 1 - n)/P 9 x - ~ ,  we can assume that, in the lower part of (E), 

a2v/ax2 < n( 1 - n) v/y2. 
Thus the governing equation becomes a2v/8y2 + n( 1 - n) V Y - ~  = 0, whose solution 
is 

and by continuity 
u = (U,/Sn) A ( x ) n y n - l  = A ( x ) d U / d y .  

If these expressions are substituted into (2.12), omitting the shear stress terms, 
then we find that, in this lower part of (E), ap/8x = 0. This explains the choice 
for the asymptotic form of f(7) and why the perturbation pressure term p,, can 
be neglected. I n  the outer part of (E), where a2v/ax2 cannot be neglected, v(x ,  y )  
has a different form and a second-order pressure gradient is induced. The wake 
of a small obstacle in a constant-pressure laminar boundary layer is quite different 
from that in a turbulent boundary layer because near the wall a2U/8y2 21 0, so 
that throughout (E) azv/ax2 is of the same order as a2v/ay2. Then a first-order 
perturbation pressure is induced by the vertical flow into the wake (Hunt 1971 6). 
However, even in a laminar wake sufficiently far downstream that x N 6, when 
the depth of the wake l ( x )  extends into the upper part of the boundary layer 
where the velocity profile is no longer linear, in the lower part of region (E) 
a2v/ax2 becomes negligible and the vertical velocity component takes the form 
v = -A'(x) U ( y )  a n d p  becomes negligible (Smith 1973; Jackson 1973). 

Streamlines for regions (W), (M) and (E) are sketched in figure 2(b) ,  which 
shows how the flow in the outer part of the boundary layer resembles that over 
a long obstacle on the surface. The flow in the lower part of (E) is a pure displace- 
ment of the undisturbed flow. The overall pattern of the streamlines is similar 
to that for a laminar wake given by Hunt (1971 b )  despite the differences between 
laminar and turbulent wakes. 

2.3. Relations between the forces on  the body and theJEow in its wake 
For a body placed in a uniform flow the relation between the wake strength a,nd 
the drag D on the obstacle is quite simple, namely 

J - W  
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FIGURE 3. Control surface for evaluating the relation between forces on 
a two-dimensional obstacle and the flow in the wake. 

However, the relation for an obstacle placed on (or near) a rigid surface may 
not be so simple because of the change in shear stress on the surface. Consider 
the control surface, shown in figure 3, with faces 1 and 2 at x = XI, X ,  and 
faces 3 and 4 at y = 0,  Y .  Denoting a particular face by a suffix, the momentum 
balance is 

If X, is taken far upstream and X, is chosen to lie in that part of the wake where 
the analysis of $2 .2  holds (L  B X, B h and 6 B Y 2(X2),  then subtracting 
the terms for the undisturbed flow and neglecting the higher-order terms in the 
wake which include the perturbation pressure p 

D = - P j o P 2 U ( Y ) ~ ( X 2 , Y ) d Y  

- p J z  U (  Y )  w(x, Y )  dx  - 

Using continuity 

Substituting the expression found earlier for u, one finds that as the control 

lim ( D + / x ' 7 z y ( y  = 0 ) d z  = 0, (2 .35)  
volume expands 

that is, the drag on the obstacle exactly balances the total change in drag on the 
wall. An implication of (2 .35)  is that 

I X,-+a, -W 

T ~ , , ( Y  = 0 ) d x  s", 
is a convergent integral. This is surprising since it follows from (2 .34)  that  
7w(y  = 0 )  N (slnx)-l. But (2 .34)  is onlyvalid if Z(x) - h, and further downstream 
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where Z(x) 9 h, it can be shown that asymptotically rZ1/(y = 0 )  N x-3. Con- 
sequently (2.35) is a correct statement within the context of our assumptions. 
The result (2.35) is unlikely to apply to  most experiments with finite values of 
h/S because, over the length of the wake, the profile of the incident boundary- 
layer flow does not remain constant. Also we have assumed that, to first order 
in &/U(h),  u -+ 0 as x -+ co, whereas it is observed that the development of 
a boundary layer is to a small extent permanently changed by a small surface 
obstacle. This implies that, to second order in &/U(h),  it is likely that u + 0 as 
x -+ 00, but this point has not been proved. Another limitation is that as x + co 
the edge of the wake eventually reaches the top of the boundary layer, which 
invalidates our analysis of $ 2.2. For these reasons it is not suprising that Weig- 
hardt (1953) found that the additional drag caused by two-dimensional obstacles 
on a flat plate tended to a non-zero constant as the plate length was increased. 
However, it is not clear from the experimental results what happens as h/6 -+ 0.  
Plate (1964) deduced from his own and Weighardt's (1953) experiments that 
for h/6 > 0.09 the net extra drag D,, for a two-dimensional plate and the well 
is given by 

m 

D,, = .+I T X 2 / ( Y  = 0) dx = +pU2(h) h(l.05 - 0-105(6/h)$), 
--a, 

which suggests that, when h/6 is small enough, D,,/[&pU2(h) h] may become 
small. Purther experimental investigations of Dbw when h/6 4 1 could perhaps 
elucidate this point. 

The complicated form of (2.34) suggests why attempts to use the momentum 
integral equation to find the drag have not been successful. Seginer (1972) 
showed by a specific example that consistent results cannot be obtained unless 
(at least) all the terms of (2.34) are calculated. 

Couple. The analysis of the mean velocity deficit in 32.2 showed that the 
wake strength was related to a constant 6, representing a component of the 
moment of momentum deficit: 

e = -Jam YU(Y)  (u - U E )  dY. 

This suggests that  d is related to the couple on the body, as it is for laminar flow. 
With the same control volume as before, this couple is 

Using the results of $2.2 and continuity the largest terms here are 

J o  



544 

But, according to the approximations made in 4 2.2 in the wake 
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so the combined couple on the obstacle and on the surface is 

From the experimental results for rZv it can be confirmed that the shear stress 
integral is very small compared with the inertia integrals. In  fact i t  is possible 
to derive a similar expression (exactly) avoiding the assumption of constant 
eddy viscosity, but it is more complex than is necessary here and will be dis- 
cussed elsewhere (Jackson 1973). Now the experimental data of Plate (1967) 
and Good & Joubert (1  968) on two-dimensional bluff bodies in boundary layers 
show that 

is negative and almost equal to C, so that small errors in measuring or estimating 
the terms on the left of (2.36) will lead to serious errors on the right. One expects 

to be a fixed multiple of C for obstacles of fixed shape and size relative to 6, 
but this multiple can only be found by experiment. Once i t  is found, however, 
the wake strength of any given obstacle follows from (2.36). 

It is possible to estimate the pressure couple by assuming that the linearization 
of the equations is valid everywhere. If the resulting pressure is denoted by pl ,  

and so, neglecting the pressure on face 4, 

Subtracting this from (2.36), and integrating by parts, we d e h e  

Co5 = C + / x * x ( p 3 - p i 3 ) d x  XI = - p / o p y [ U ( y ) u - ~ ~ y u d y ‘ ] d y .  dY 0 (2.38) 

With u = A(x)  U’(y) + C(x, y )  this becomes 

as the control volume expands. It may be shown from (2.26) that 

(2.39) 
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so for a power-law profile 

c. - 1 + 2 n  c,, = -p- ' +2n/om y U ( y )  Cdy  = - 
l + n  l+n 

(2.40) 

The significance of (2.40) is that it gives a simple relation between an integral t? 
of the velocity in the wake and the sum cOs of the couple C on the obstacle and 
the difference 

between the added pressure couples on the surface. Since the surface pressure 
pt3 calculated from the linearized wake equation differs from p 3  only in the near 
wake and in the 'bubble', it follows that d is a measure of the pressure forces 
acting on the body and the surface close to the body. I n  other words it is an 
integral which relates the wake flow far from the body to the pressure field close 
to  the body. It is not a direct relation between the wake flow and the drag or 
couple on the body. An examination of the velocity profiles and streamlines of 
Good & Joubert's (1968) experiment suggests that for all values of x > 0 
-p13 > -p3 ,  and consequently that 

COS > c, p c  > c. (2.41) 

There are flows where the effects of the added surface couples are small, the 
most important being the turbulent wake behind a three-dimensional body. 
This case was mentioned in the review by Hunt (1971a) and will be discussed in 
a later paper. Another case is turbulent flow over a two-dimensional hump 
where separation does not occur, and in that case Cos = C (Jackson 1973). 

2.4. Calculation of Reynolds stress and turbulent velocities 
Reynolds stress. I n  the wake the perturbation Reynolds stress is 

where uj: and u' are the turbulent components of velocity in the x and y direc- 
tions and PA( -uiul) is the increase in Reynolds stress in the wake above that 
in the boundary layer. Thus our assumption (2.15) for rxY in the mixing region 
(M) and our assumption of a self-preserving velocity profile in (2.19) imply that 

A( - uj:uC) = &K1-1/(2+n)d2f/dq2 

Y- 

- 
(2.42) U2(h) (x/h)l+l/"+"' 

- 
so in (M) a plot of (x/h)(s+n)/(z+n)A( -u 'u ' ) /P (h )  Z Y  against q should collapse all 
shear stress data from the wake onto a single curve. This curve is shown in 
figure 4 with the same value of c" as was used in the calculation of u shown in 
figure 2. I n  particular the maximum increase in Reynolds stress in (M) is given 
by the expression 

A( - Uj:U&nax = ( >  0). (2.43) 
- K(l+%)l(Z+?L) 0.88 

aU2(h)  (X/h)(3+n)~(2+70 

35 F L M  64 
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Region-(M) solution 

- 3.0 

Region-(W) 

.v I1 = I 8 
I 

-0.1 \ 0 0. I 0.2 0.3 0.4 
s lr = 6 - 

A( -uiui) ( x )+ 
FIGURE 4. Self-preserving profiles of the perturbation Reynolds stress behind a two- 
dimensional obstacle. -€-, experimental curve with scatter bar (n = 0.125, h/S = +); 
-, theoretical curve deduced from the theoretical velocity profile. 

- 
W h )  h-Y, 

Thus the maximum Reynolds stress in the main part of the wake is greater than 
the Reynolds stress upstream, although the velocity is less. The behaviour of 
A( - u;u;) in the wall region (W) is quite different. It follows from (2.33b) that 
- 

(2.44) 

Thus in (W) the Reynolds stress is decreased and, it is interesting to note, this 
decrease extends further downstream than the increase in Reynolds stress in 
the mixing region; the decrease falls off approximately like (x/h)-l wherea,s the 
increase falls off approximately like (x/h)-$. This difference in the behaviour of 
A( -u;ul) in regions (M) and (W) means that a similarity plot is not possible 
for both regions. Thus the graph of A( -u;u;) shown in figure 4 is a universal 
plot for region (M) but not for region (W). Note that Townsend's (1965) theory 
predicts that the Reynolds stress everywhere falls off with distance approximately 
as (+)-l. 

Turbulent velocities. The theoretical and experimental study of many types of 
turbulent shear flow has shown that in self-preserving and equilibrium flows 
the maximum mean-square turbulent veloci ties are proportional to  the maximum 
Reynolds stress. If we make that assumption for these wake flows it follows 

- 
- 
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that the changes in the mean-square turbulent velocities in the x and y directions 
are given by - __ - 

(2.45) 

Taking values of A typical of the atmospheric boundary layer (A, II 5, A, 2i 1-5), 
it follows from (2.43) that in (M) the maximum increases in mean-square turbulent 
velocities are given bv 

(2.46) 

It might be expected that in the wall region, where the shear stress is reduced, 
A ( U ~ ) ~  should be reduced also. This is an oversimplified prediction because the 
large turbulent eddies in the mixing region (M) can induce irrotational fluctuating 
velocities near the wall. The balance between these two effects is difficult to 
predict by a simple theory. 

- 

3. Wind-tunnel experiments on a wake behind a two-dimensional block 
3.1. Experimental results 

There are two methods of generating boundary layers in a wind tunnel sufficiently 
thick for investigating the flow over obstacles on the surface which are small 
compared with the boundary-layer thickness 8. The natural method is to allow 
the boundary layer to  develop naturally along a wall of the wind tunnel, but 
in order that the boundary-layer thickness be great enough an unusually long 
wind tunnel is required. A number of such tunnels have now been constructed, 
the one at Colorado State University having been used successfully by Plate & 
Lin (1965) to  examine some aspects of the flow over obstacles placed on a smooth 
wall. The alternative method is to create a thick fully developed layer in a short 
tunnel distance by using fences and other deflecting devices. Various artificial 
methods of simulating the atmospheric boundary layer have been developed in 
recent years. The experiments we shall describe were performed in the simulated 
boundary layer developed a t  C.E.R.L. by Counihan (1969). As shown in figure 5, 
the installation consists of a castellated fence producing a momentum defect 
near the wall, followed by a row of ‘vorticity generators’, which are wedge 
shaped in plan and quarter-ellipses in side view. The purpose of these generators 
is to create the large-scale turbulence found in the natural boundary layer and to 
extract momentum from the outer part of the boundary layer. The method has 
been used both in the small tunnel used in these experiments (618 x 185mm in 
cross-section) and in a large tunnel (153 x 4.58 m), and has been shown to model 
most aspects of the turbulent boundary layer satisfactorily over a limited range 
of the tunnel. I n  these experiments the hot-wire probe was fixed a t  686 mm, or 
4-5 boundary-layer heights, downstream of the vorticity generators and the 

35-2 



548 J .  Counihan, J .  C. R. Hunt and P. S. Jackson 

FIGURE 5 .  Layout of the C.E.R.L. boundary-laycr wind-tunnel working section. 

c- - 

Height of - 
obstacle - 

-;7 I I I 

Height J 0 1  0.2 0.3 

- Height of 
obstacle - 

-;7 I I I 

Height J 0- 1 0.2 0.3 
of roughncss elcmrnt 

Y P  

FIGURE 6. (a )  Comparison of the boundary-layer profile U ( y )  with power-law and log- 
arithmic-law representation. -o-o-, measured profile ; - - - , power law ; A ,  points 
calculated from logarithmic law. (b )  Measurements of the mean velocity in the wake of 
a two-dimensional block. Velocity profile at z/h = 3 is a sketch based on approximate 
measurements and flow visualization. 
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obstacle was then placed a t  various distances upstream of the probe, This was 
unsatisfactory because the boundary layer was still developing, so that the flow 
over the block was not always the same. However, the flow was measured with 
and without the obstacle so the errors in the wake should be small. 

The velocity profile near y = 0 a t  the position of the probe is shown in figure 6 ( a ) ,  
as well as the best power-law and logarithmic profiles for comparison with the 
assumed profile of ( 2 . 2 ) .  By expressing the results in terms of a free-stream speed 
and a nominal 6, the best power-law fit was found to be 

U(y)/Um = 0*965(y/6- 0.02)0'125, (3.1) 

and the best logarithmic law 

y /6-  0.01 [ 0-0003 1' -- ' ( ' I  - 0.1251n 
urn 

When these two curves in figure 6 (a)  are compared it is clear that the logarith- 
mic law is marginally a better fit as y approaches the height k of the roughness 
elements (k/S = 0.02). This form of the logarithmic law also agrees with the 
measured Reynolds stresses: the stress a t  y = 0 was found to be such that 
U, = 0.1 I ~ K U ,  and the stress was appreciably constant near y = 0,  only varying 
by 10%from y = 0 t o y  = &a. 

The two-dimensional block used had a square cross-section and height 
h = I9 mm. Thus h/6 = Q and h/k E 11, which satisfies the first restriction of the 
theory, equation (2.1). Flow visualization in the boundary layer revealed that 
separation occurred off the top upstream edge and reattachment a t  about 
x/h II 6. Thus, for 0 < x/h < 6 ,  reverse flow occurred in the wake and so the hot 
wire could not be used in this region, as sketched in figure 6 (b).  Hot-wire measure- 
ments of the mean velocity profile U,(y)/U, a t  various stations downstream of the 
body in the wake for x/h > 6 are also shown in figure 6 ( a ) .  I n  figures 7 ( a )  and (b ) ,  
( ( a ) * / U ( h )  and ((u1)2)3/U(h) are plotted as functions of g/h a t  various positions 
in the wake. The general features of these results are predictable, namely that 
the velocity defect - u and the additional turbulence decrease as x/h increases; 
the position of the maximum value of - u occurs a t  a value of y which increases 
as x/h increases. Also the position of the maximum intensity of turbulence occurs 
a t  values of y > h, which suggests that  this intense turbulence emanates from 
the shear layer trailing from the top of the body. 

3.2.  Comparison of experiments with theory 
The first test for the theory proposed in 3 2 must be whether the experimental 
profiles of u ( y )  are self-preserving and can be plotted on a single curve. Therefore 
in figure 8 our experimental values of ( u / U ( h ) ) x / ( h - y J  are plotted against 
71 = [y/(h-y,)]/[Kx/(h-y,)]1/(n+2', where n = $ and from (3.2) and (2 .19b)  
K = 0-05. The figure shows that this method of plotting leads to the results 
for 21.1 > x/(h-y , )  > 7.5 being scattered around a single curve, but with no 
discernible systematic deviation. A 'best ' experimental curve has been drawn 
and this is the curve which was compared with the theory in figure 2. Note 
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FIGURE 7. R.m.8. longitudinal and vertical turbulent velocity components in the wake of 
a two-dimensional block. z/h: V, 6.34; 0, 8.84; 0, 13.5; A, 17.7. ----, turbulence in 
absence of obstacle. 

that  the parameter e needed to  evaluate the theoretical curve was chosen so 
that the maximum values of the theoretical and experimental values of 
(u/U(h))z / (h-y , )  are the same. 

Figures 2 and 8 clearly demonstrate that the profiles of u are self-preserving 
and that the maximum value of u ( y )  falls off like x-l. The results also show that 
the theoretical velocity profiles for (M) and (W) describe the measured self- 
preserving profiles tolerably well. The theoretical profiles show the best a.gree- 
ment a t  the top of the wake and very close to  the wall, which was not unexpected 
from the shear stress models used in the two regions. It is also interesting that 
the wake is still described by the theory for values of xlh 21 8, where u/U(h)  is 
as much as 0.5, even though the theory is technically only valid if u/U(h)  < 1. 
Note that, a t  this value of x/h, n( 1 - n)/(Z/h)2 is 15 times as great as (z/h)-*, so 
that the assumptions for the analysis of (E) are satisfied. 

A n  important implication of the theory for the wake is that  the integral 

is convergent and has the same value a t  all positions downstream. (Note that .ii 
is the value of u less the displacement solution u E ( y )  as 7 --f 00, which is propor- 
tional to  ( x ~ ) - l . )  The experiments have confirmed the theoretical distribution of 
the wake velocity deficit and therefore support the prediction that i t  is not a 
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FIGURE 8. Velocity deficit measurements plotted as a self-preserving profile for the wake 
behind a two-dimensional block (n. = 0.125, K = 0.050, h /S  = +). x/(h-yl): 0, 7.5; 
n, 10.5; A, 13.0; v, 16.1; 0, 21.1. 

momentum integral but the moment of momentum integral 6 which charac- 
terizes the wake behind a body in a boundary layer. The dimensions of p c  are 
the same as those of the couple on the body and since in 5 2.3 it was argued that 
c i s  related to C, it is interesting to compare them. In the theoretical calculations 
of u/U(h)  in figure 2 the arbitrary constant & in (2.19) was taken to be such that 
u/U(h) agreed with the experimental results at  the maximum value of u/U(h) .  
Thus 

- 
and 

For these experiments where n = 0-125 and K = 0.05 e = 0.8U2(h) (h -yJ2 .  
The approximate solutions for regions (M) and (W) were earlier shown to be 

valid only if the parameters B and 8 (defined by (2.24) and (2.31)) were such that 
B = 0(1) a.nd B < 1. The data from our experiments as 2 increased from 7-5 
to 21-0 gave the value of E as changing monotonically from -0.11 to - 0.18, 
and that oi'B as changing from 0.43 to 0.47. 

c = - (h - yJ2 P ( h )  KQI.  
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FIGURE 9. Measurements of the perturbation Reynolds stress plotted as a self-preserving 
profile for the wake behind a two-dimensional block (n = 0.125, K = 0.05, h/S 2: 4). 
~ / ( h - y , ) :  0, 7.5; 0, 10.5; A ,  13.0; V, 16.1; 0, 21.1. 

Neither the couple nor the pressures on the body were measured. However, 
from the Building Research Station Digest no. 119 (1970) for pressures on 
rectangular blocks in shear flows an estimate for the couple C can be made. These 
data give the pressure coefficients for the upstream and downstream faces as 
approximately uniform and equal to 0.7 and - 0.5, and for the upper surface 
near the leading edge as - 2.0, whence 

whereas 
C -n 0*37ph2U2(h), 
t? = 0*8h2U2(h). 

Thus the prediction of (2.41) that pt? > C is borne out. I n  fact it appears that 
a major contribution to t? must come from the added surface couple of the low 
pressure region behind the bluff body. 

The next test of the theory is whether it adequately describes the shear stresses. 
In  figure 9 we have plotted 

A(-=) 8 

as a function of (y/(h - y , ) ) / [ K z / ( h  - yl)]l/(n+z), which confirms that the experi- 
mental profiles are self-preserving. However, the theoretical Reynolds stress 
profile shown in figure 4, which was obtained from the theoret,ical curve of u(x ,  y) 
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Theoretical 
6.34 8.84 13.8 17.0 values 

TABLE 1. Maximum increase in turbulence in wake behind a two- 
dimensional model block (n = 0.125) 

in figure 2, has the same shape as the experimental profile and is of the same order 
of magnitude, but does not agree closely with the experimental profiles except 
as 7 -+ co and 7 -+ 0. If the maximum slope of the experimental curve in figure 2 
is used to calculate the maximum value of A( -u;u;) the agreement between 
the theoretical and experimental maxima is very close, but the fit still remains 
poor near the value of 7 at which u has its maximum. 

From the experimental values of the two components of r.m.s. turbulent 
velocity in figure 7, the maximum values of 

~ 

[ A ( a / U 2 ( h ) ]  (x/h)$ and [ A ( a / U 2 ( h ) ]  (x/h)Q 
can be evaluated for comparison with the prediction of (2.46). The experiments 
do not provide a critical test for the theory. But the results given in table 1 
below are not inconsistent with the prediction that the increase in mean-square 
turbulence is proportional to (x/h)-%. 

This general result should be of some practical use. The theoretically de- 
termined value for the constant of proportionality does not agree with these 
experimental results, but this is not surprising on account of the disagreement 
between the predicted and measured values of A( -ukuC). It is interesting that, 
although the shear stress a t  y = 0 is slightly less than that in the incident flow 
(as determined from the velocity profiles and extrapolation to y = 0 of the 
Reynolds stress measurements), the turbulent velocities are slightly greater. 
This suggests that the turbulent eddies from the mixing region (M) perhaps 
induce velocity fluctuations near the surface and if so this result supports our 
hypothesis that large eddies in (M) exist which share momentum and give rise 
to an approximately constant eddy viscosity in (M). 

- 

4. Comparison with other experiments 
We now consider those experimental measurements (known to us) of flow 

behind two-dimensional bluff bodies in turbulent boundary layers which are 
sufficiently detailed to confirm or refute our theory and to  compare with our 
experiments. 

Plate & Lin (1965) measured the mean and fluctuating velocities and surface 
pressures behind wedge-shaped obstacles placed in turbulent boundary layers 
which were artificially thickened by a trip and a roughened section of the floor 
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FIGURE 10. Self-preserving plot of Plate t Lin’s (1965) velocity measurements behind 
a 25 x 100 mm wedge in a turbulent boundary layer on a smooth wall (n = 0.2, K = 0.062, 
h/S 2 -&) and the theoretical profile (matching at maximum). x / h :  0, 24; 0, 32; 
A, 46; V, 72. - , region-(M) solution; - - - -  , extrapolation of (M) solution into 
region (W). 

at the tunnel entrance, and were then allowed to develop naturally over a smooth 
floor. The cross-section of the obstacles were right triangles with the sloping face 
downstream. Various shapes were used but we shall only use the data from one 
of height 25mm and base 100mm. This wedge was placed in a boundary layer 
of thickness 250mm, so that h/S = A. At the height of the obstacle the velocity 
U(h)  was 0*79U, and the friction velocity was U, = 0.062U,. The value of n is 
found to be 0.2, and the Reynolds number for the obstacle U(h) h/v = 1.16 x lo5. 
Unfortunately the velocity profile at  the position of and in the absence of the 
wedge was not measured, the only undisturbed profiles being obtained 900 mm 
upstream of the obstacle. In  our calculations this profile was taken as U(y). 
Values of [u/U(h)] [x/(h-y, ) ]  have been calculated from Plate & Lin’s data for 
the 25 mm wedge and plotted as a function of ( y / h ) / [ K ~ / h ] l ’ ( ~ + ~ )  in figure 10. As 
with our results this method of plotting collapses the data and thus shows that 
the velocity deficit in the wake has a self-preserving form. The main difference 
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Theoretical 
“ lh 14.25 18.25 26.25 value 

0.036 0.029 0.016 

1.95 2.26 

TABLE 2 

2-14 2.6 

between Plate & Lin’s results and our experimental results is that their velocity 
deficit is about 2.5 times as great. This may be caused by the fact that the only 
measurement of the undisturbed velocity profile was taken so far upstream, but 
the main difference between the two experiments is that Plate & Lin used 
a smooth wall (with U,/U(h) = 0.079), whereas in our experiments the wake 
developed over a rough wall (with U,/U(h) = 0.060). There is also a difference 
in the Reynolds numbers of the flow over the obstacles, theirs being 1.11 x lo5 
compared with only 1 x lo4 in our experiments. Despite those differences, it  is 
interesting to observe that the self-preserving velocity profile still agrees quite 
closely with the theoretical profile for the mixing region (M), if the disposable 
constant in the theoretical profile is chosen to achieve a best fit at  the maximum 
value of u. (The solution for the wall region (W) is omitted because of the smooth 
surface.) Plate & Lin (1965) measured the pressure distribution along the surface 
behind one larger wedge. These results also show that the length of the bubble 
was about 10 h, and that the maximum difference between the pressure on the 
surface just downstream of the bubble and that far downstream was approxi- 
mately 0 . 0 8 ~  U(h)  \umaxl. This provides an excellent experimental confirmation 
of our analysis in 5 2.2 that in the wake the perturbation pressure gradient ap/& is 
negligible compared with terms like pU(h)  au/ax. The measurements of mean- 
square turbulent velocities are difficult to analyse because of the lack of data on 
the undisturbed flow. But if values for ( a / U o o  typical of turbulent boundary 
layers are used for the upstream turbulence then we find (see table 2) that the 
results for A ( q & x  are similar to our experimental results. If the theory of 5 2.3 
is valid then, since the maximum value of -u/U(h) in Plate & Lin’s experiments 
on the 50 x l00mm wedge is twice as great as those for our experiment, the 
predicted value of ( A ( Q / U 2 ( h ) )  (z/h)Q is twice a.s great also. The theoretical 
value is obtained as before, by choosing the constant i2 such that experimental 
and theoretical mean velocity profiles agree when -u/U(h) is a maximum. 
The reason why the experimental values in this case also fall below the theoretical 
value is again that the shear stress model is inadequate. 

The other set of detailed measurements contains those performed by Nageli 
(1953). These consisted of mean velocityprofilesupwind and downwind (x/h < 30) 
of a fence 2-2m high and 24m long erected on flat grassland. Two different 
fences, both constructed with wooden slats, were used in two sets of measure- 
ments; in the first case the open-area ratio qi was 20 yo and in the second case 50 %. 
From the published data ( -u/U(h))  (x/h) was calculated and the results for the 
two fences are plotted in figures 11 (a) and (b) .  In  each figure the experimental 
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Rsgton-(M) theory 

Region-(W) theory 
( 6 ~ . ~ ' / 1 ~ ~ 0 )  

0 

' \  

0 1 a 2 0  3.0 4.0 

-- 
U(h)  -7 h-Y, 1 

FIGURE 11. Velocity deficit measurements plotted as self-preserving profiles for the natural 
wind behind porous screens on grassland (Nageli 1953; n = 0.2; K = 0.056, h = 2.2 m. 
breadth 24 m) ancl the theoretical prof3es (matching at maximum). Ranges of z/h: 0 ,  
6-10; B, 11-15; A, 16-20; V ,  21-25; 0, 26-30. (a )  Screen with 20% open-area ratio. 
( b )  Screen with 50 yo open-area ratio. 
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results are presentedin groups for two ranges of x/h. For the denser fence (q5 = 0.2) 
the results only display a self-preserving form for 21 2 x/h 2 6. For x/h > 21 
the velocity deficit decreases more rapidly than x-l, presumably because the 
fence is only of finite width (1 lh)  and sufficiently far downstream the wake ceases 
to be two-dimensional. Note that the maximum value of [ - u / U ( h ) ]  (x/h) is 
about 3-1, which is less than in our model experiments (4.0) but is of the same 
order. Since we expect that the value of c increases with the couple, then the 
fact that the couple on a porous fence is lower than on a solid obstacle should 
explain why c“ is lower in Nageli’s experiments than in the model experiments. 

The flow in the wake behind the more porous fence has some features quite 
different from those behind a solid or more dense fence. As Nageli found in his 
full-scale investigation and Castro (1971) and Baltaxe (1967) have found in 
model investigations, the recirculating bubble behind a porous fence or plate 
may be detached from the body. Therefore the distance downwind of the obstacle 
over which effective ‘shelter’ or reduction in wind speed occurs may be con- 
siderably greater behind a porous obstacle than a solid obstacle. This also means 
that behind a porous fence it takes a greater distance downwind for the per- 
turbation velocity u to be small enough for the wake to be self-preserving. Kow- 
ever, behind a more porous fence less lateral mixing occurs, so that the effects 
of the finite length of the fence are felt on the centre-line further downstream. 
Thus we find in figure 1 I (6) that the wake is not self-preserving until 

20 < x/h < 30. 

Compared with the denser fence note that in the self-preserving region the maxi- 
mum value of [ - ( u / U ( h ) )  (xlh)], and therefore e, is less, although closer to the 
fence (x/h < 20) in the non-self-preserving region, e is greater. 

Since the couple C on this more porous fence is less than on the denser fence 
(de Bray 1971), it is interesting to note that (? is also less. On the basis of the 
data of Counihan’s and Nageli’s experiments it appears that e increases as the 
couple on the body increases. The theoretical curve shown in figure I1 (6)  has 
been evaluated using the same expression for eddy viscosity as is used for a solid 
obstacle. Since all the flow passes over a solid obstacle and forms a shear layer 
a t  the top, the height for specifying the eddy viscosity was taken as h. For 
a porous obstacle, since only some of the flow passes over the obstacle, it  might 
be more logical to specify the eddy viscosity with respect to the maximum 
vertical distance by which streamlines are displaced, which is of order ( 1 - q5)h. 
This would mean that in plotting Nageli’s data K would be reduced and therefore 
the data points in figure 11 ( b )  could be displaced upwards to agree more closely 
with the theoretical profile. This is only a tentative hypothesis which ought 
to be tested in detail. 

Other data exist on wakes behind bodies in boundary layers, both full scale 
and model scale, but most are incomplete. However, it is often possible to extract 
the value of [ - u/U(h)],,, as a function of xlh and therefore in figure 12 we 
compared the values for a number of experiments. The additional full-scale data 
are those of Rider (1952), who measured the mean wind velocity behind a hedge 
on a flat grass field. Since Rider only made velocity measurements a t  three 
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FIGURE 12. Comparison of results from several experiments for the maximum value of 
the velocity deficit in wakes behind two-dimensional surface obstacles as a function of the 
distance downstream. Rough surface: m ,  thin screen, Nageli; 0 ,  thick screen, Nageli; 
0, rectangular block (h/6 = +), Counihan; 0 ,  hedge, Rider. Smooth surface: A, wedge 
25 x 100 mm, Plate & Lin; V,  50 x 100 mm, Plate & Lin; @, fence, Sforza & Mons. 

heights, these are insufficient to  evaluate [u/U(h)lmaX. However, by assuming 
the theoretical velocity distributions of 3 2.2, [u/U(h)lmax can be estimated by 
interpolating between the measurements. The results are shown in figure 12 
and once again the x-l hypothesis is supported. 

Taking the results for [u/U(h)],,, for the wakes on rough walls measured by 
Counihan, Nageli and Rider, we conclude that 

where m is a dimensionless constant which depends on t'he shape and porosity 
of the obstacle and also the dimensionless ratios U(h)/U,, h/S and h/k. For these 
three sets of experiments, which cover a considerable range of values for hjk 
and porosity, it is interesting that 

3.0 < m < 4.0. (4.2) 
We cannot evaluate m from our theory, but we can suggest how the strength 

of the wake varies with the roughness of the surface. From (2.26) and (2.19b) it 
follows that 

[4U(h)Imax = m(z/(h -YJ)-', (4.1) 
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We have argued in $2.3 that C is primarily determined by the pressure field 
close to the body. Therefore, if we make the hypothesis that this pressure field 
is primarily determined by U(h),  then whatever the roughness, for a given shape 
and porosity, 

C/[h-yl)2 U2(h)]  N constant. 

I n  fact the measurements of Jensen & Franck (1965) indicate that for the couple 
C/[(h-y l )2  U2(h)]  decreases as the roughness increases. We showed in § 2.2 that  
I (n)  is relatively insensitive to the value of n, varying by about 15 yo Over the 
values of n found for the smoothest to the roughest surfaces. The primary effect 
of roughness is to alter the eddy-viscosity expression K defined in (2.196)) SO 

that from (4.1) and (4.3) we expect that  

m In [(h - Yl)/YOl. (4.4) 

The W.M.O. review (van Eimern et al. 1964) describes a number of empirical 
formulae for the shelter effect. Some research has shown that  In [(h - YI)/YOI is 
a relevant parameter, but no formula such as (4.3) has been derived, even 
empirically. The data shown in figure 12 cannot be used t o  test (4.3) because 
each obstacle was different, but some natural and wind-tunnel measurements 
behind shelter belts by Jensen (1954) can be used. I n  the first case a natural 
shelter belt 3.5m high in rough terrain (h/y,  = 78) was compared with a wind- 
tunnel test behind a shelter belt with the same porosity (38%) and approxi- 
mately the same roughness (h/y,  = 56). At twenty h downstream (x /h  = 201, 
the measurements taken a t  y /h  = 0.4 give the same value of - urnax/U(h) = 0.28. 
(This incidentally was an interesting verification of the similarity of natural and 
wind-tunnel flows despite a huge difference in Reynolds number between the 
two flows.) To discern the effects of varying the roughness, measurements behind 
the same model shelter belt were then made on a much smoother surface, which 
was still aerodynamically rough (h/y ,  = 4500). I n  this case it was found that 
-Umax/U(h) = 0.49. If our interpretation of (4.3) is correct, then from (4 .4 ) )  the 
ratio of - umax/U(h) for these two cases examined by Jensen should be 

In 78/ln 4500 = 0.52; 

the experimental value for this ratio is 0.57. Another set of measurements was 
made behind a more porous fence (45 yo) 2.5m high on very smooth mud flats 
(h/yo = 14000), and compared with wind-tunnel tests behind model shelter 
belts over surfaces with two roughness lengths (h/yo = 56 and 4500). At x /h  > 25 
the ratios of the values of -umax/U(h) for the rough and smooth surfaces was 
again approximately equal to the ratios of In (hly,). Whether or not Our specific 
hypothesis is correct, it seems likely that -umax/U(h) or m decreases as the 
roughness of the terrain increases. 

For wakes over smooth walls we have plotted Plate & Lin’s (1965) results for 
both the 25 x l00mm wedge and also the 50 x IOOmm wedge. We have already 
commented on the values of these velocity deficits being much greater than those 
measured on rough surfaces. Other wake measurements over smooth walls have 
been made by Plate (1967) behind various fences with heights much less than 
that of the boundary layer. From the scanty velocity measurements published 
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in the latter paper one finds that the values of u/U(h)  fall close to the values 
for the wakes behind the larger of the wedges of Plate & Lin. 

For comparison with Plate & Lin’s data for wakes on a smooth uall we have 
plotted the results of Sforza & Mons (1970) for the maximum velocity defect 
behind a fence placed a t  the leading edge of a smooth flat plate, the defect being 
defined as the difference between the measured velocity and that in the boundary 
layer on the plate in the absence of the fence, and U(h) being the velocity of the 
free stream approaching flat plate. Although this is an entirely different type 
of wall wake from that  which we have considered, it is noteworthy that, as 
Sforza & Mons remarked, their velocity defect had an (x/h)-I decay behaviour. 
It is also interesting to note that their results for [ - u/U(h)lrnax are of the same 
order of magnitude as those for Plate & Lin’s experiments. 

The similarity of all these results indicates that  in turbulent wakes behind 
bluff obstacles placed on rough or smooth surfaces the maximum velocity deficit 
falls off like (x/h)-l. 

5. Conclusion 
5.1. Limitations of theory and experimental data 

The first conclusion of this paper is that a simple eddy-viscosity theory can 
describe most of the salient characteristics of the wake behind two-dimensional 
surface obstacles in turbulent boundary layers. The main shortcoming of the 
theory is that it does not adequately describe the distribution of shear stress 
and turbulent intensity across the wake, although it does suggest the dependence 
with distance downstream of the maximum shear stress and turbulence intensity. 
By considering a control surface taken around the obstacle and the structure of 
the wake, we have been able t o  show how the wake is related to  the pressure 
field close to  the body, and that for a general two-dimensional obstacle there is 
no simple relation between the drag or couple on the obstacle and the wake flow. 
Despite some success in describing these wakes, the theory is in a very primitive 
stage and, we believe, needs further development. 

I n  addition to further theoretical work this wake model requires more ex- 
perimental investigation both in wind tunnels and in full-scale experiments. 
The effects of varying the ratio h/6 for h/6 < 1, the roughness of the boundary 
layer, and the shape and porosity of the obstacle in particular need to be in- 
vestigated. When such experiments are undertaken i t  is most important that  
Reynolds stresses, turbulence intensity and if possible the turbulence scale be 
measured as well as the mean velocity profiles. Pressure distributions on the 
obstacle and the surface should be measured to  test their relation with the wake 
flow. Vortex shedding from any surface obstacle in or outside a shear layer has 
hardly been measured a t  all, and is another aspect of bhe wake flow which needs 
to  be investigated. It is of particular importance that several velocity and stress 
profiles should be taken in the absence of tthe body so that changes in velocit,y and 
shear stress can be calculated; it is the changes in these quantities which can be 
understood theoretically. 
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5.2. Xome practical conclusions 
We have mentioned in the introduction that an important application of the 
study of the wakes behind two-dimensional surface obstacles is to the design 
of shelter belts and windbreaks. The effectiveness of a shelter belt is often 
measured by the shelter parameter s, which in our notation is defined as 

s = - u / U ( y ) .  (5.1) 

I n  the mixing region (M) of the wake u does not vary with y in the same way as the 
incident profile U(y), so that s is a function of y .  But in the lower part of the wall 
region (W), which is the relevant region for assessing the effectiveness of a shelter 
belt, both u and U ( y )  are proportional to Iny [(2.3) and (2.33)] and therefore s 
is approximately constant, as Jensen (1954) showed experimentally. The con- 
clusion we reach from our theory and from our own and others’ experimental 
results is that, for wakes behind two-dimensional obstacles on a rough surface, 
sufficiently far downstream 

where m varies with the shape and porosity of the obstacle, and also the roughness 
of the surface. For a given obstacle, there are theoretical grounds for postulating 
that 

and a little experimental evidence of Jensen (1954) to support the hypothesis. 
The range of m for different types of obstacle and of terrain roughnesses lies 
between 3 and 10. 

At distances less than 20h downwind the shelter depends critically on the 
nature of the shelter belt. The formula (5.2) would appear to be a useful approxi- 
mation for dense shelter belts when x/h > 10, but for less dense shelter belts only 
when x/h > 20. These are tentative criteria which need further investigation. 
But they are a t  least quantitative hypotheses, which in our submission have been 
lacking in the past. 

The increase or decrease in turbulence in the wall region (W)is also an important 
measure of the effectiveness of a shelter belt. A dense shelter belt produces 
a considerable increase in turbulence in the mixing region (M), but in (W) there 
is only a slight increase downstream of the bubble. The qualitative measurements 
of turbulence behind model porous fences by Baltaxe (1967) suggest that the 
more porous the fence the less the increase in turbulence. The effect of porosity 
is another aspect needing more experimental study, 

Since u ( y )  is proportional to In y/(x/h) in the lower part of the wall region (W), 
the perturbation shear stress a t  the surface 

s 2: m/(x/h),  (5.2) 

m cC In “h - YJYOI 

- (Tz&0 cC (x/h)-l 

and therefore it might be expected that this would give a mcasure of the reduction 
in heat and mass transfer far downstream in the wake. 

The results of our theoretical and experimental investigations should also 
be of some use in assessing the effect of a building on the wind forces on another 
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building downwind, on the behaviour of an aircraft downwind and on the down- 
wind dispersal of airborne pollution. Since few buildings have the shape con- 
sidered in this paper our results are not as directly relevant as for shelter belts. 
The salient facts are that the maximum reduction in wind velocity u is pro- 
portional to  (z/h)-l and that the vertical displacement of the position of maximum 
velocity deficit is approximately proportional to  (x/h)t .  It may also be useful to  
know that the maximum increase in mean-square turbulence, which occurs a t  
a position above the position of maximum velocity deficit, decreases approxi- 
mately as (x/h)-s. We find that, downstream of the bubble, A ( U ; ) ~  is of the same 
order as the upstream value of (u1)2 even though - u < U. Thus the root-mean- 
square turbulence intensity ( A ( D ) t / U ( h )  decreases more slowly than u/U(h) .  

- 
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